B.sc(H) part 1 paper 1
Topic:The inverse of matrix
Subject mathematics
Dr hari kant singh
associate prof
RRS college mokama

The Inverse of Matrix

Defination: If A is a non-singular square matrix, and the matrix B is such that AB = BA = I, then B is called the inverse of A and is written as A^{-1} .

It is also called reciprocal matrix.

The analogy in algebra is $a \times \frac{1}{a} = a \times a^{-1} = 1$.

From Art. 4.3, we know that $A \frac{(adj A)}{|A|} = \frac{(adj A)}{|A|} A = I$.

Hence we have $B = A^{-1} = \frac{(\operatorname{adj} A)}{|A|}$.

Thus from the preceding theorem $AA^{-1} = I$.

Since A and B are conformal for the product AB and BA and AB = BA; it follows that A and B are the square matrices of the same order.

Thus a matrix has an inverse of it only when it is a square matrix.

Theorem

T. Existence of the inverse: Theorem

The necessary and sufficient condition for the existence of the inverse of a square matrix A is that A is non-singular i.e., $|A| \neq 0$.

Proof: The condition is necessary.

Let B be the inverse of A. AB = BA = I

i.e., |AB| = |I||A||B| = 1 and hence $|A| \neq 0$.

The condition is sufficient.

If
$$|A| \neq 0$$
, then $A \cdot \left(\frac{\operatorname{adj} A}{|A|}\right) = I = \left(\frac{\operatorname{adj} A}{|A|}\right) \cdot A$.

so that $B = \frac{\text{adj } A}{|A|}$ is the inverse of A.

Cor. : If A is a non-singular matrix (i.e., $|A| \neq 0$.)

then its inverse $A^{-1} = \frac{\text{adj } A}{|A|}$.

2. The inverse of a matrix is unique.

Proof: Let us suppose that non-singular matrix *A* has two inverses *B* and *C*.

$$\therefore$$
 $AB = BA = I$ and $AC = CA = I$.

$$\therefore B = BI = B(AC) = (BA)C = IC = C$$

i.e.
$$B = C$$
.

Therefore, the inverse of *A* is unique.

i Reversal law for the inverse of a product

Theorem: If A, B be two non-singular matrices of the same order, when $(AB)^{-1} = B^{-1}A^{-1}$.

We have,
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$
 (Associative law)
= AIA^{-1} ; :: $BB^{-1} = I$
= AA^{-1} ; :: $AI = A$
= I .

Similarly,
$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB$$
; $A^{-1}A = I$
= $B^{-1}B$; $B = B$
= I .

Thus,
$$(AB)(B^{-1}A^{-1}) = (B^{-1}A^{-1})AB = I \Rightarrow (AB)^{-1} = B^{-1}A^{-1}$$
.

order, then (ABC)-1 = C-18-1A-1 In general, if A, B, C, K, L be non-singular matrices of the same order, then $(ABC - KL)^{-1} = L^{-1}K^{-1}$, $C^{-1}B^{-1}A^{-1}$

Theorem

If A be a non-singular square matrix, then $(A')^{-1} = (A^{-1})^n$.

Since $|A'| = |A| \neq 0$, therefore the matrix A' is also nonsingular

He have the identity $AA^{-1} = A^{-1}A = I$.

Now taking the transpose on both sides, we have

$$(AA^{-1})' = (A^{-1}A)' = I'$$

 $(A^{-1})'A' = A'(A^{-1})' = I;$

by applying the reversal law for transposes This shows that $(A^{-1})'$ is the inverse of A'.

Hence $(A')^{-1} = (A^{-1})'$.

i.e., the inverse of the transpose of a matrix is the transpose of the IHINTS.

Cor.: If the non-singular matrix A is symmetric, then A^{-1} is also symmetric.

Since A is symmetric, therefore A' = A.

Now, we have
$$(A^{-1})' = (A')^{-1}$$

= A^{-1} , since $A' = A$.

This shows that A^{-1} is symmetric.